问:1000字数学论文
- 答:探究三角形的等积分割线
如何将一个三角形面积分割成两个相等的部分,是我们已熟知的问题,只要沿三角形的中线,即可把三角形分割成面积相等的两个部分,许和配多同学认为,这样的分割线只有三条,但是,这样的坦棚族分割线到底有多少条呢?
问题1:请用一条直线,把△ABC分割为面积相等的两部分。
解:取BC的中点,记为点D,连结AD,则AD所在直线把△ABC分成面积相等的两个部分。
大家知道,这样分割线一共有三条,分别是经过△ABC的三条中线的直线,能把△ABC的面积分成相等两部分。除了这三条以外,还有很多种,并且对于△ABC边上任意一点,都可以找到一条经过这点且把三角形面积平分的直线。
问题2:点E是△ABC中AB边上的任意一点,且AE≠BE,过点E求作一条直线,把△ABC分让弊成面积相等的两部分。
解:如图2,取AB的中点D,连结CD,过点D作DF∥CE,交BC于点F,则直线EF就是所求的分割线。
证明:设CD、EF相交于点P
∵点D是AB的中点
∴AD=BD
∴S△CAD=S△CBD
∴S四边形CAEP+S△PED=S四边形DPFB+S△PCF
又∵DF∥CE
∴S△FED=S△DCF(同底等高)
即:S△PED=S△PCF
∴S四边形CAEP=S四边形DPFB
∴S四边形CAEP+SPCF=S四边形DPFB+S△PED
即S四边形AEFC=S△EBF
由此可知,把三角形面积进行平分的直线有无数条,而
本文来自第一论文网
来源于
毕业论文
望可以帮到您。。
问:求一篇大一高数论文 直接发给我
- 答:现在还需要吗?我有一篇
问:生活中的数学论文1000字 不要复制
- 答:你才给5分。谁给你写啊